Étale theta functions, mono-theta environments, and [IUTchl] $\S1-\S3$, I

Seidai Yasuda

19 July, 2016 at RIMS, Kyoto University

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

We start from : an initial Θ-datum

An **initial** Θ -**datum** (initial Θ -data in the original paper) is a 7-tuple

$$(\overline{F}/F, X_F, \ell, \underline{C}_K, \underline{\mathbb{V}}, \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}}, \underline{\epsilon})$$

satisfying the following 7 conditions. **Condition (1).** F: a number field s.t. $-1 \in F$, and \overline{F} : an alg. closure of F.

Condition (2)

$$X_F = E_F \setminus \{0\}, E_F$$
: ell. curve $/F$ s.t.

- F is Galois over $F_{\text{mod}} := \mathbb{Q}(j(E_F)).$
- E_F has good or semistable red. at any $v \nmid \infty$.
- E_F[6](F) = E_F[6](F).
 (⇒E_F has good or split semistable red. at any v ∤ ∞.)

Condition (3)

 ℓ : a prime number \geq 5, s.t. the image of

$$\rho_{E_F,\ell}: G_F := \operatorname{Gal}(\overline{F}/F) \to \operatorname{Aut}_{\mathbb{F}_\ell}(E[\ell](\overline{F})) \cong \operatorname{GL}_2(\mathbb{F}_\ell)$$
contains $\operatorname{SL}_2(\mathbb{F}_\ell)$. Set

$$\operatorname{Ker} \rho_{E_{F},\ell} =: \operatorname{Gal}(\overline{F}/K).$$

 $(\Longrightarrow K/F$: Galois). We moreover assume:

 C_K := (X_F/±1) ⊗_F K is a K-core, i.e. any étale morphism over K between finite étale coverings of C_K is over C_K.

Condition (4)

$$\begin{split} \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}} &: \text{ a finite set of places of } F_{\mathrm{mod}} \text{ s.t.} \\ &\bullet \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}} \neq \emptyset \\ &\bullet v \in \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}} \Longrightarrow v \nmid 2\ell\infty \\ &\bullet v \in \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}} \Longrightarrow j(E_F) \not\in \mathcal{O}_{F_{\mathrm{mod},v}} \\ &(\Longrightarrow X_F : \text{ bad red. at any } w | v.) \end{split}$$

We do not assume that $\mathbb{V}^{\mathrm{bad}}_{\mathrm{mod}}$ contains all the bad primes.

 $\underline{C}_{K} = \underline{X}_{K} / \{\pm 1\}$, where $\underline{X}_{K} \to X_{K} = X_{F} \otimes_{F} K$: cyclic cov. of deg. ℓ , unramified at the boundary.

$$\begin{array}{l} -1: \underline{X}_{\mathcal{K}} \xrightarrow{\cong} \underline{X}_{\mathcal{K}} : \text{ a lift of } -1: X_{\mathcal{K}} \xrightarrow{\cong} X_{\mathcal{K}} \\ \text{(a lift } -1 \longleftrightarrow \text{ a cusp } \underline{0} \text{ of } \underline{X}_{\mathcal{K}} \text{).} \end{array}$$

So $(\underline{X}_{K}, \underline{0})$ comes from an isogeny $\underline{E}_{K} \rightarrow E_{K}$ of elliptic curves.

 $(\underline{X}_{\mathcal{K}}, \underline{0})$: unique up to isom. since $\operatorname{Image} \rho_{E_{F}, \ell}$: large.

$$\begin{array}{l} \rightsquigarrow \underbrace{X}_{\overline{F}}, \ \underline{C}_{\overline{F}} \text{ over } \overline{F}. \\ \underline{\Delta}_{X} \twoheadrightarrow \underline{\Delta}_{X}^{\Theta} \twoheadrightarrow \overline{\Delta}_{X}, \ \sharp \overline{\Delta}_{X} = \ell^{3}. \\ 1 \to \overline{\Delta}_{\Theta} \to \overline{\Delta}_{X} \to \overline{\Delta}_{X}^{\text{ell}} \to 1, \\ \overline{\Delta}_{\Theta} \cong \mathbb{Z}/\ell\mathbb{Z}, \ \overline{\Delta}_{X}^{\text{ell}} \cong (\mathbb{Z}/\ell\mathbb{Z})^{\oplus 2}. \\ \underline{X}_{\overline{F}} \to X_{\overline{F}}: \text{ degree } \ell \longleftrightarrow \overline{\Delta}_{\underline{X}} \subset \overline{\Delta}_{X}: \text{ index } \ell. \\ 1 \to \overline{\Delta}_{\Theta} \to \overline{\Delta}_{\underline{X}} \to \overline{\Delta}_{\underline{X}}^{\text{ell}} \to 1, \\ \overline{\Delta}_{\underline{X}}^{\text{ell}} \subset \overline{\Delta}_{X}^{\text{ell}}, \ \overline{\Delta}_{\underline{X}}^{\text{ell}} \cong \mathbb{Z}/\ell\mathbb{Z}. \end{array}$$

Étale theta functions, mono-theta environments, and [IUTchI]

Recall: Construction of $\underline{X}_{\overline{F}}$ (continued)

$$\overline{\Delta}_{\underline{X}} : \text{ abelian, } \{\pm 1\} \circlearrowleft \overline{\Delta}_{\underline{X}} \\ \rightsquigarrow \overline{\Delta}_{\underline{X}} = \overline{\Delta}_{\Theta} \times \overline{\Delta}_{X}^{\text{ell}}.$$

$$\underline{\underline{X}}_{\overline{F}} \to \underline{X}_{\overline{F}} : \text{ degree } \ell \longleftrightarrow \overline{\Delta}_{\underline{\underline{X}}} = \overline{\Delta}_{\underline{X}}^{\text{ell}} \subset \overline{\Delta}_{\Theta} \text{ index } \ell.$$

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Condition (6) : $\underline{\epsilon}$: a non-zero cusp of \underline{C}_{K}

$$\rightsquigarrow X_K, C_K$$
 as follows:

^{\exists !} f: rational function on $\underline{C}_{\mathcal{K}}$ whose values at $0, \underline{\epsilon},$ "[2]($\underline{\epsilon}$)" are $\infty, 0, 1$, respectively and which has a simple zero at $\underline{\epsilon}$.

 $X_{\mathcal{K}}, \ \underline{C}_{\mathcal{K}}$: the (orbi)curve obtained from $X_{\mathcal{K}}, \ \underline{C}_{\mathcal{K}}$ by adjoining a ℓ -th root of f.

Condition (7)

- $\underline{\mathbb{V}}$: a set of places of K s.t.
 - The composite

$$\underline{\mathbb{V}} \hookrightarrow (\text{the places of } K) \ o (\text{the places of } F_{\mathrm{mod}}) =: \mathbb{V}_{\mathrm{mod}}$$

Set

$$\underline{\mathbb{V}}^{\text{bad}} := \{ \underline{v} \in \underline{\mathbb{V}} \mid \underline{v} \mid^{\exists} v \in \mathbb{V}_{\text{mod}}^{\text{bad}} \}.$$

Then for any $\underline{v} \in \underline{\mathbb{V}}^{\text{bad}}$, $\underline{C}_{v} = \underline{C}_{K} \otimes_{K} K_{v}$: type $(1, \mathbb{Z}/\ell\mathbb{Z})_{\pm}.$

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

$$(\overline{F}/F, X_F, \ell, \underline{C}_K, \underline{\mathbb{V}}, \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}}, \underline{\epsilon})$$

and for $\underline{v} \in \underline{\mathbb{V}}$, we will construct

$$\underline{\underline{\mathcal{F}}}_{\underline{\nu}}, \mathcal{C}_{\underline{\nu}}, \mathcal{C}_{\underline{\nu}}^{\vdash}, \tau_{\underline{\nu}}^{\vdash}, \mathcal{C}_{\underline{\nu}}^{\Theta}, \tau_{\underline{\nu}}^{\Theta}$$

where ...

An aim (continued)

where

- $\underline{\mathcal{F}}_{\nu}$: a Frobenioid when $\underline{v} \nmid \infty$
- C_v, C[⊢]_v, C^Θ_v: p_v-adic (resp. archimedean)
 Frobenioids if v ∤ ∞ (resp. v|∞) (so its divisor monoid is monoprime).
- τ[⊢]_ν, τ^Θ_ν: characteristic splittings (≑ splitting of the inclusion of functors "O[×] ⊂ O[▷]") of C[⊢]_ν, C^Θ_ν

On Next Slides

Construction of $\underline{\mathcal{F}}_{\underline{\nu}}$ is hard when $\underline{\nu} \in \underline{\mathbb{V}}^{\text{bad}}$. In the next slides we will focus on this case.

Bad local situation

K: a finite ext. of \mathbb{Q}_p .

E: a Tate elliptic curve / K s.t.

•
$$E[2](\overline{K}) = E[2](K)$$

• $X^{\log} = (X, 0)$: not *K*-arithmetic

$$\mathfrak{X}^{\log}$$
: stable model of X^{\log} over
 $\mathfrak{S}^{\log} = (\operatorname{Spec} \mathcal{O}_K, \text{the closed point}).$
(so the special fiber of \mathfrak{X}^{\log} is irreducible with one
singular point, at which the formal completion is of
the form $\mathcal{O}_K[[u, v]]/(uv - q_E))$
 $Y^{\log} \to X^{\log}$: the topological \mathbb{Z} -covering

Fix an odd integer
$$\ell \geq 5$$
 satisfying
 $E[\ell](\overline{K}) = E[\ell](K).$
 $Y^{\log} \to \underline{X}^{\log} \to X^{\log}, \deg(\underline{X}) = \ell.$
 $\rightsquigarrow \underline{X}^{\log}, \underline{Y}^{\log}.$
We have a cartesian diagram:

Choose $\dot{X}^{\log} \to X$, degree 2, unramified at 0. Taking composite with \dot{X} , we have

Action of ± 1

We can take a lift of $-1: X \to X$ to an involution of

Passing to the quotient by $\{\pm 1\}$ we have

The Next Slides

In the bad local situation, we will construct a Frobenioid

$\underline{\underline{\mathcal{F}}}$.

Recall: a **Frobenioid** is a category with some additional structures. (In our case, it turns out that the additional structures can be recovered from the underlying category. We often regard $\underline{\mathcal{F}}$ just as a category.)

Frobenioid

Recall: a Frobenioid is a quadruple $(\mathcal{F}, \mathcal{D}, \Phi, \mathcal{F} \to \mathbb{F}_{\Phi})$, where

- \mathcal{F} : a category,
- D : a connected, totally epimorphic cat. (=: E-cat.)
- Φ : a divisorial monoid on \mathcal{D} ($\rightsquigarrow \mathbb{F}_\Phi$ the associated category)
- $\mathcal{F} \to \mathbb{F}_\Phi$: a covariant functor,

that satisfies a lot of technical conditions. The underlying category is \mathcal{F} . The category \mathcal{D} is called the **base category**, and Φ the **divisor monoid**.

A Typical Example

$$\begin{split} \mathcal{D}: \text{ a cat. of connected regular noeth. schemes.} \\ \text{Assume } \mathcal{D}: \textit{E-cat.} \\ \Phi: \text{ the monoid on } \mathcal{D} \text{ given by} \end{split}$$

$$\Phi(X) = ($$
effective divisors on $X).$

 \rightsquigarrow a Frobenioid ${\mathcal F}$ defined as follows:

A Typical Example (continued)

\mathcal{F} : category of pairs (X, \mathcal{L}) where

- X : an object of \mathcal{D}
- \mathcal{L} an invertible \mathcal{O}_X -module

A morphism $\phi : (X, \mathcal{L}) \to (Y, \mathcal{L}')$ is a triple $(\phi_{\mathcal{D}}, n_{\phi}, \iota_{\phi})$ where

- $\phi_{\mathcal{D}}: X \to Y$: a morphism of \mathcal{D}
- n_{ϕ} : an integer ≥ 1

• $\iota_{\phi}: \mathcal{L}^{\otimes n_{\phi}} \hookrightarrow \phi_{\mathcal{D}}^* \mathcal{L}'$ an injection

This gives an example of model Frobenioids.

Model Frobenioids

To a quadruple $(\mathcal{D}, \Phi, \mathbb{B}, \operatorname{Div}_{\mathbb{B}})$ where

- \mathcal{D} : *E*-category
- Φ : a divisorial monoid on D (→ Φ^{gp} is also a monoid on D)
- $\mathbb B$: a group-like monoid on $\mathcal D$
- $\operatorname{Div}_{\mathbb B}: \mathbb B \to \Phi^{\operatorname{gp}}$: homomorphism,

we can associate the following Frobenioid \mathcal{F} .

Model Frobenioids (continued)

... we can associate the following Frobenioid \mathcal{F} . Objects: pairs (A, α) of $A \in \operatorname{Obj}(\mathcal{D})$, $\alpha \in \Phi^{\operatorname{gp}}(A)$ Morphisms: a morphism $(A, \alpha) \to (B, \beta)$ is a quadruple $(\phi_{\mathcal{D}}, Z_{\phi}, n_{\phi}, u_{\phi})$, where $(\phi_{\mathcal{D}}, Z_{\phi}, n_{\phi})$ is a morphism of \mathbb{F}_{Φ} and $u_{\phi} \in \mathbb{B}(A)$, such that

$$n_{\phi} \alpha + Z_{\phi} = \phi_{\mathcal{D}}^* \beta + \operatorname{Div}_{\mathbb{B}}(u_{\phi})$$

in $\Phi(A)^{\text{gp}}$.

Such a Frobenioid \mathcal{F} is called a model Frobenioid. The Frobenioid $\underline{\mathcal{F}}$ that we would like to construct in the bad local situation is a model Frobenioid.

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Construction of $\underline{\underline{\mathcal{F}}}(1)$: the base category

We construct the base category \mathcal{D} .

Let $\mathcal{D} = \mathbb{B}^{\mathrm{tp}}(\underline{X})^{\circ}$: cat. of connected tempered coverings of $\underline{X}^{\mathrm{log}}$.

Construction of $\underline{\mathcal{F}}(2)$: the divisor monoid

We construct the divisor monoid Φ on \mathcal{D} .

For any object B of \mathcal{D} , let B^{ell} : the maximal subcovering of the composite $B \to \underline{X}^{\log} \to X^{\log}$ s.t. B^{ell} is unramified at the cusp of X^{\log} .

Construction of $\underline{\underline{\mathcal{F}}}$ (2) (continued)

The divisor monoid is roughly

$$B\mapsto \Phi(B):=$$
 "DIV₊($\mathfrak{B}^{\mathrm{ell}})^{\mathrm{pf}}$ ",

where

- $\mathfrak{B}^{\mathrm{ell}}$: the stable model of B^{ell} .
- DIV_+ : the effective divisors supported on the union of the special fiber and the cusps

$$\mathrm{pf}$$
 : perfection (e.g., $(\mathbb{Z}_{\geq 0})^{\mathrm{pf}} = \mathbb{Q}_{\geq 0})$

N.B. The actual definition is more complicated.

Construction of $\underline{\mathcal{F}}$ (2) (remark)

We regard $\Phi(B)$ as a submonoid of Φ_0 , defined roughly as

$$\Phi_0(B) = \text{``DIV}_+(\mathfrak{B})^{\text{pf''}}$$

when B admits a suitable stable model \mathfrak{B} .

N.B. The actual definition is more complicated, and is given by introducing the notion of divisors on universal combinatorial coverings and then by doing some "sheafification" process.

Construction of $\underline{\mathcal{F}}(3)$: the remaining structure

We construct the group-like monoid $\mathbb B$ on $\mathcal D$.

 $\mathbb{B}_0: B \mapsto ``\{f : \text{log-merom. on } \mathfrak{B}\}''.$

when *B* admits a suitable stable model \mathfrak{B} . **N.B.** The actual definition is more complicated, Here log-merom. = mero. func. *f* on *B* s.t. for $\forall N$, *f* admits a *N*-th root in a tempered covering of *B*.

$$\mathbb{B}(B) = \{ f \in \mathbb{B}_0(B) \mid \operatorname{div}(f) \in \Phi(B) \}.$$

 $\operatorname{Div}_{\mathbb B}$: the restriction of $\operatorname{div}.$

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Properties of $\underline{\mathcal{F}}$

 $(\mathcal{D}, \Phi, \mathbb{B}, \operatorname{Div}_{\mathbb{B}}) \xrightarrow{\sim} a \text{ model Frobenioid } \underline{\mathcal{F}}.$

The Frobenioid $\underline{\mathcal{F}}$ has the following properties:

- \mathcal{D} : slim, of FSMFF type
- Φ : perfect, perf-factorial, non-dilating, cuspidally pure, rational
- <u>F</u>: of unit-profinite type, of isotropic type, of model type, of sub-quasi-Frobenius trivial type, not of group-like type, of standard type, of rationally standard type

(I will not explain the terminology appeared here.)

As a consequence, we can reconstruct

$$\mathcal{D}, \Phi, \text{ and } \underline{\mathcal{F}} \to \mathbb{F}_{\Phi} \to \mathcal{D}$$

category theoretically from $\underline{\mathcal{F}}$.

The Base-Field-Theoretic Hull C

$$\begin{split} \mathbb{F}_0 \subset \mathbb{B}_0 \text{ ; submonoid of constant functions.} \\ \Longrightarrow \mathbb{F}_0 \subset \mathbb{B} \subset \mathbb{B}_0. \end{split}$$

$$\Phi^{\mathrm{bs-fld}} := \mathbb{Q}_{>0} \cdot \mathrm{Image}(\mathbb{F}_0 \to \Phi_0^{\mathrm{gp}}) \cap \Phi.$$

 $(\mathcal{D}, \Phi^{\mathrm{bs-fld}}, \mathbb{F}_0, \mathbb{F}_0 \to (\Phi^{\mathrm{bs-fld}})^{\mathrm{gp}})$ \rightsquigarrow the model Frobenioid \mathcal{C} (called the **base-field-theoretic hull** of $\underline{\mathcal{F}}$).

One can reconstruct C category theoretically from $\underline{\underline{\mathcal{F}}}$.

Next Slides

We will go back to the global situation.

In later pages, we will give a closer look at the bad local situation.

Let us go back to our first setting, i.e.

An initial Θ -datum

$$(\overline{F}/F, X_F, \ell, \underline{C}_K, \underline{\mathbb{V}}, \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}}, \underline{\epsilon})$$

is given.

For every $\underline{v} \in \mathbb{V}$, we will construct $\underline{\mathcal{F}}_{\underline{v}}$ (which is a Frobenioid when $\underline{v} \nmid \infty$), $p_{\underline{v}}$ -adic or archimedean Frobenioids $\mathcal{C}_{\underline{v}}$, $\mathcal{C}_{\underline{v}}^{\vdash}$, $\mathcal{C}_{\underline{v}}^{\Theta}$ and characteristic splittings $\tau_{\underline{v}}^{\vdash}$, $\tau_{\underline{v}}^{\Theta}$ of $\mathcal{C}_{\underline{v}}^{\vdash}$ and $\mathcal{C}_{\underline{v}}^{\Theta}$.

We divide the situation into the following three cases

•
$$\underline{v} \in \mathbb{V}^{\text{bad}}$$

•
$$\underline{\textit{v}} \notin \mathbb{V}^{\mathrm{bad}}$$
, $\underline{\textit{v}} \nmid \infty$

•
$$\underline{v}|\infty$$

Construction of the Frobenioids (1) : when $\underline{v} \in \mathbb{V}^{\mathrm{bad}}$

 $\underline{\underline{\mathcal{F}}}_{\underline{\nu}}$: the Frobenioid $\underline{\underline{\mathcal{F}}}$ in the bad local situation. In particular its base category is $\mathcal{D}_{\underline{\nu}} = B^{\mathrm{tp}}(\underline{X}_{\underline{\nu}})^{\circ}$. $\mathcal{C}_{\underline{\nu}} \subset \underline{\underline{\mathcal{F}}}$: the base-field theoretic hull. Set $\mathcal{D}_{\underline{\nu}}^{\vdash} := B(\operatorname{Spec} K_{\underline{\nu}})^{\circ}$.

We have an adjunction

$$\mathcal{D}_{\underline{v}} \leftrightarrows \mathcal{D}_{\underline{v}}^{\vdash}$$

Next Slides

We will construct a Frobenioid $C_{\underline{\nu}}^{\vdash}$ whose base category is $\mathcal{D}_{\nu}^{\vdash}$. We need preliminaries.

Recall:
$$\mathcal{O}^{
ho}($$
 $)$ and $\mathcal{O}^{ imes}($ $)$

For a Frobenioid \mathcal{F} and an object A of \mathcal{C} , we set

$$\mathcal{O}^{\triangleright}(A) := \{ f : A \to A \mid f \mapsto (\mathrm{id}, *, 1) \text{ under } \mathcal{F} \to \mathbb{F}_{\Phi} \},\$$

 $\mathcal{O}^{\times}(A) = (\mathcal{O}^{\triangleright}(A))^{\times}, \text{ and}$
 $\mu_N(A) = \mathrm{Ker}(N : \mathcal{O}^{\times}(A) \to \mathcal{O}^{\times}(A)).$

Notation

For $W \in \text{Obj}(\mathcal{D}_{\underline{v}})$, let $\mathbb{T}_W = (W, 0)$ denote the Frobenius trivial object lying over W.

We use the subscript \underline{v} to denote objects of $\operatorname{Obj}(\mathcal{D}_{\underline{v}})$ introduced in the bad local situation, when $X^{\log} = (E_{K_{\underline{v}}}, 0)$.

 $\underline{q}_{\underline{=}\underline{v}}:=q_{\underline{v}}^{1/2\ell}$

 $q_{\underline{\nu}}$: the *q*-parameter of $E_{K_{\underline{\nu}}}/K_{\underline{\nu}}$. We regard $q_{\underline{\nu}}$ as an element of $\mathcal{O}^{\rhd}(\mathbb{T}_{\underline{X}_{\underline{\nu}}})$

The assumption on $E_F[2]$ and the definition of $K \implies q_{\underline{v}}$ admits a 2ℓ -th root $\underline{q}_{\underline{v}} := q_{\underline{v}}^{1/2\ell}$ in $\mathcal{O}^{\triangleright}(\mathbb{T}_{\underline{X}})$.

$\mathcal{C}^{\vdash}_{\mathbf{v}}$ and $\tau^{\vdash}_{\mathbf{v}}$

 $\underbrace{\underline{q}}_{\underline{-\nu}} \text{ defines the constant section } \mathbb{N}_{\mathcal{D}_{\underline{\nu}}} \hookrightarrow \mathcal{C}_{\underline{\nu}} \text{ of } \Phi_{\mathcal{C}_{\underline{\nu}}}:$ the divisorial monoid for $\mathcal{C}_{\underline{\nu}}$. Denote this section by $\log(\underline{q}_{\underline{-\nu}}).$

Set

$$\Phi_{\mathcal{C}_{\underline{\nu}}^{\vdash}} = \mathbb{N} \cdot \log(\underline{q}_{\underline{\nu}})|_{\mathcal{D}_{\underline{\nu}}^{\vdash}} \subset \Phi_{\mathcal{C}_{\underline{\nu}}}|_{\mathcal{D}_{\underline{\nu}}^{\vdash}}.$$

$$\rightsquigarrow (p_{\underline{\nu}}\text{-adic}) \ \mathcal{C}_{\underline{\nu}}^{\vdash} \text{ whose base category is } \mathcal{D}_{\underline{\nu}}^{\vdash}.$$

 $\underline{\underline{q}}_{\underline{\underline{\nu}}} \in K_{\underline{\underline{\nu}}} \rightsquigarrow \underline{\underline{q}}_{\underline{\underline{\nu}}} \text{ defines a characteristic splitting } \tau_{\underline{\underline{\nu}}}^{\vdash}$ modulo $\mu_{2\ell}$.

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Next Slides

We will construct a Frobenioid $C_{\underline{\nu}}^{\Theta}$ and its base category is $\mathcal{D}_{\nu}^{\Theta}$. We again need preliminaries.

 $\underline{\underline{\Theta}}_{\underline{v}}$

Let us regard $\underline{\underline{Y}}_{\underline{\nu}}$ as an object of $\mathcal{D}_{\underline{\nu}}$ via $\underline{\underline{Y}}_{\underline{\nu}} \to \underline{\underline{X}}_{\underline{\nu}}$. $\underline{\underline{\Theta}}_{\underline{\nu}} \in \mathcal{O}^{\times}(\mathbb{T}_{\underline{\underline{Y}}_{\underline{\nu}}}^{\pm})$: the inverse of the Frobenioid theoretic ℓ -th root of theta function. Here the superscript \div means the biratioalization (i.e., localization with respect to the pre-steps).

Remark. Relation of $\underline{\underline{\Theta}}_{\underline{v}}$ with $\underline{\underline{q}}$

We have
$$\underline{\underline{\Theta}}_{\underline{\nu}}(\sqrt{-q_{\underline{\nu}}}) = \underline{\underline{q}}_{\underline{\nu}}$$
.
(Note. Both $\underline{\underline{\Theta}}_{\underline{\nu}}$ and $\underline{\underline{q}}_{\underline{\nu}}$ are determined only up to $\mu_{2\ell}(\mathbb{T}_{\underline{X}}_{\underline{\nu}})$.)

The base category \mathcal{D}_{v}^{Θ}

$$\begin{split} \mathcal{D}^{\Theta}_{\underline{\nu}} &\subset (\mathcal{D}_{\underline{\nu}})_{\underline{\overset{}{\underline{\nu}}}_{\underline{\nu}}} \text{ the full subcat. whose obj. are the} \\ \text{products of objects of } \mathcal{D}^{\vdash}_{\underline{\nu}} \text{ and } \underline{\overset{}{\underline{\nu}}}_{\underline{\nu}}. \\ \Longrightarrow \mathcal{D}^{\vdash}_{\underline{\nu}} &\cong \mathcal{D}^{\Theta}_{\underline{\nu}} \text{ : equivalence.} \end{split}$$

Define
$$\mathcal{O}_{\mathcal{C}^{\ominus}_{\underline{\nu}}}^{\triangleright}$$
: monoid on $\mathcal{D}_{\underline{\nu}}^{\Theta}$ as
 $A^{\Theta} \mapsto \mathcal{O}^{\times}(\mathbb{T}_{A^{\Theta}})(\underline{\Theta}_{\underline{\nu}}|_{\mathbb{T}_{A^{\Theta}}})^{\mathbb{N}} \subset \mathcal{O}^{\times}(\mathbb{T}_{A^{\Theta}}^{\div}).$
 $\Longrightarrow \mathcal{O}_{\mathcal{C}^{\ominus}_{\underline{\nu}}}^{\times}(-) \cong \mathcal{O}_{\mathcal{C}^{\Theta}_{\underline{\nu}}}^{\times}(-) := \mathcal{O}_{\mathcal{C}^{\Theta}_{\underline{\nu}}}^{\triangleright}(-)^{\times}.$

The Frobenioid $C_{\underline{v}}^{\Theta}$

$$\Longrightarrow \mathcal{O}_{\mathcal{C}_{\underline{\nu}}^{\vdash}}^{\rhd}(-) \cong \mathcal{O}_{\mathcal{C}_{\underline{\nu}}^{\Theta}}^{\rhd}(-), \ \underline{\underline{q}}_{\underline{\nu}} \mapsto \underline{\underline{\Theta}}_{\underline{\nu}}|_{\mathbb{T}_{\mathcal{A}^{\Theta}}}.$$

 \rightsquigarrow *p*-adic Frobenioid $\mathcal{C}^{\Theta}_{\underline{\nu}} \subset \underline{\underline{\mathcal{F}}^{\div}}_{\underline{\nu}}$ whose base cat. is $\mathcal{D}^{\Theta}_{\underline{\nu}}$ and a characteristic splitting $\tau^{\Theta}_{\underline{\nu}}$ modulo $\mu_{2\ell}$ such that

$$\mathcal{F}_{\underline{\nu}}^{\vdash} := (\mathcal{C}_{\underline{\nu}}^{\vdash}, \tau_{\underline{\nu}}^{\vdash}) \cong \mathcal{F}_{\underline{\nu}}^{\Theta} := (\mathcal{C}_{\underline{\nu}}^{\Theta}, \tau_{\underline{\nu}}^{\Theta}).$$

Theorem

We can reconstruct the followings category theoretically from $\underline{\mathcal{F}}_{v}$:

•
$$\mathcal{D}_{\underline{v}}, \mathcal{D}_{\underline{v}}^{\vdash}, \mathcal{D}_{\underline{v}}^{\Theta}$$

• $\mathcal{C}_{\underline{v}}, \mathcal{C}_{\underline{v}}^{\vdash}, \mathcal{C}_{\underline{v}}^{\Theta}$
• $\tau_{\underline{v}}^{\vdash}, \tau_{\underline{v}}^{\Theta}$